Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Bioeng Biotechnol ; 10: 1082945, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36507275

RESUMO

[This corrects the article DOI: 10.3389/fbioe.2022.894667.].

2.
Front Bioeng Biotechnol ; 10: 894667, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35586556

RESUMO

Chitosan and its derivatives are bioactive molecules that have recently been used in various fields, especially in the medical field. The antibacterial, antitumor, and immunomodulatory properties of chitosan have been extensively studied. Chitosan can be used as a drug-delivery carrier in the form of hydrogels, sponges, microspheres, nanoparticles, and thin films to treat diseases, especially those of the skin and soft tissue such as injuries and lesions of the skin, muscles, blood vessels, and nerves. Chitosan can prevent and also treat soft tissue diseases by exerting diverse biological effects such as antibacterial, antitumor, antioxidant, and tissue regeneration effects. Owing to its antitumor properties, chitosan can be used as a targeted therapy to treat soft tissue tumors. Moreover, owing to its antibacterial and antioxidant properties, chitosan can be used in the prevention and treatment of soft tissue infections. Chitosan can stop the bleeding of open wounds by promoting platelet agglutination. It can also promote the regeneration of soft tissues such as the skin, muscles, and nerves. Drug-delivery carriers containing chitosan can be used as wound dressings to promote wound healing. This review summarizes the structure and biological characteristics of chitosan and its derivatives. The recent breakthroughs and future trends of chitosan and its derivatives in therapeutic effects and drug delivery functions including anti-infection, promotion of wound healing, tissue regeneration and anticancer on soft tissue diseases are elaborated.

3.
PLoS One ; 6(4): e19253, 2011 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-21552531

RESUMO

Both ornithine decarboxylase (ODC) and its regulatory protein, antizyme inhibitor (AZI), can bind with antizyme (AZ), but the latter has a higher AZ-binding affinity. The results of this study clearly identify the critical amino acid residues governing the difference in AZ-binding affinities between human ODC and AZI. Inhibition experiments using a series of ODC mutants suggested that residues 125 and 140 may be the key residues responsible for the differential AZ-binding affinities. The ODC_N125K/M140K double mutant demonstrated a significant inhibition by AZ, and the IC(50) value of this mutant was 0.08 µM, three-fold smaller than that of ODC_WT. Furthermore, the activity of the AZ-inhibited ODC_N125K/M140K enzyme was hardly rescued by AZI. The dissociation constant (K(d)) of the [ODC_N125K/M140K]-AZ heterodimer was approximately 0.02 µM, which is smaller than that of WT_ODC by approximately 10-fold and is very close to the K(d) value of AZI_WT, suggesting that ODC_N125K/M140K has an AZ-binding affinity higher than that of ODC_WT and similar to that of AZI. The efficiency of the AZI_K125N/K140M double mutant in the rescue of AZ-inhibited ODC enzyme activity was less than that of AZI_WT. The K(d) value of [AZI_K125N/K140M]-AZ was 0.18 µM, nine-fold larger than that of AZI_WT and close to the K(d) value of ODC_WT, suggesting that AZI_K125N/K140M has an AZ-binding affinity lower than that of AZI_WT and similar to that of ODC. These data support the hypothesis that the differences in residues 125 and 140 in ODC and AZI are responsible for the differential AZ-binding affinities.


Assuntos
Ornitina Descarboxilase/química , Ornitina Descarboxilase/metabolismo , Proteínas/química , Proteínas/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação , Ornitina Descarboxilase/genética , Inibidores da Ornitina Descarboxilase , Ligação Proteica , Proteínas/antagonistas & inibidores , Proteínas/genética , Solventes/química , Eletricidade Estática , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...